

DIGITAL SIGNAL PROCESSING

SUBJECT CODE-BEE604

YEAR-III

SEMESTER –VI

UNIT- 2

UNIT-3

UNIT-4

UNIT-5

DIGITAL SIGNAL PROCESSORS

 ARCHITECTURE
The ’54x DSPs use an advanced, modified Harvard architecture that maximizes
processing power by maintaining one program memory bus and three data memory
buses. These processors also provide an arithmetic logic unit (ALU) that has a high
degree of parallelism, application-specific hardware logic, on-chip memory, and
additional on-chip peripherals. These DSP families also provide a highly specialized
instruction set, which is the basis of the operational flexibility and speed of these DSPs.
Separate program and data spaces allow simultaneous access to program instructions
and data, providing the high degree of parallelism. Two reads and one write operation
can be performed in a single cycle. Instructions with parallel store and application-
specific instructions can fully utilize this architecture. In addition, data can be transferred
between data and program spaces. Such parallelism supports a powerful set of
arithmetic, logic, and bit-manipulation operations that can all be performed in a single
machine cycle. Also included are the control mechanisms to manage interrupts,
repeated operations, and function calls. Figure 1 shows the functional block diagram that
shows the principal blocks and bus structure in the ’54x devices
TMS320C5’416 FAMILY – FUNCTIONAL OVERVIEW
Central Processing Unit (CPU)
The CPU of the ’54x devices contains:

 A 40-bit arithmetic logic unit (ALU)

 Two 40-bit accumulators

 A barrel shifter

 A 17 × 17-bit multiplier/adder

Arithmetic Logic Unit (ALU)

The ’54x devices perform 2s-complement arithmetic using a 40-bit ALU and two 40-bit

accumulators (ACCA and ACCB). The ALU also can perform Boolean operations. The ALU can

function as two 16-bit ALUs and perform two 16-bit operations simultaneously when the C16 bit

in status register 1 (ST1) is set.

Accumulators
The accumulators, ACCA and ACCB, store the output from the ALU or the multiplier /
adder block; the accumulators can also provide a second input to the ALU or the
multiplier / adder. The bits in each accumulator is grouped as follows:

 Guard bits (bits 32–39)

 A high-order word (bits 16–31)

 A low-order word (bits 0–15)

Instructions are provided for storing the guard bits, the high-order and the low-order
accumulator words in data memory, and for manipulating 32-bit accumulator words in or
out of data memory. Also, any of the accumulators can be used as temporary storage for
the other.
Barrel Shifter
The ’54x’s barrel shifter has a 40-bit input connected to the accumulator or data memory
(CB, DB) and a 40-bit output connected to the ALU or data memory (EB). The barrel
shifter produces a left shift of 0 to 31 bits and a right shift of 0 to 16 bits on the input
data. The shift requirements are defined in the shift-count field (ASM) of ST1 or defined
in the temporary register (TREG), which is designated as a shift-count register. This
shifter and the exponent detector normalize the values in an accumulator in a single
cycle. The least significant bits (LSBs) of the output are filled with 0s and the most
significant bits (MSBs) can be either zero-filled or sign-extended, depending on the state
of the sign-extended mode bit (SXM) of ST1. Additional shift capabilities enable the
processor to perform numerical scaling, bit extraction, extended arithmetic, and overflow
prevention operations.
Multiplier/Adder
The multiplier / adder performs 17 × 17-bit 2s-complement multiplication with a 40-bit
accumulation in a single instruction cycle. The multiplier / adder block consists of several
elements: a multiplier, adder, signed/unsigned input control, fractional control, a zero
detector, a rounder (2s-complement), overflow/saturation logic, and TREG. The
multiplier has two inputs: one input is selected from the TREG, a data-memory operand,
or an accumulator; the other is selected from the program memory, the data memory, an
accumulator, or an immediate value. The fast on-chip multiplier allows the ’54x to
perform operations such as convolution, correlation, and filtering efficiently. In addition,
the multiplier and ALU together execute multiply/accumulate (MAC) computations and
ALU operations in parallel in a single instruction cycle. This function is used in
determining the Euclid distance, and in implementing symmetrical and least mean
square (LMS) filters, which are required for complex DSP algorithms.
Compare, Select, and Store Unit (CSSU)
The compare, select, and store unit (CSSU) performs maximum comparisons between
the accumulator’s high and low words, allows the test/control (TC) flag bit of status
register 0 (ST0) and the transition (TRN) register to keep their transition histories, and
selects the larger word in the accumulator to be stored in data memory. The CSSU also
accelerates Viterbi-type butterfly computation with optimized on-chip hardware.
Program Control
Program control is provided by several hardware and software mechanisms:

 The program controller decodes instructions, manages the pipeline, stores the status
of operations, and decodes conditional operations. Some of the hardware elements
included in the program controller are the program counter, the status and control
register, the stack, and the address-generation logic.

 Some of the software mechanisms used for program control include branches, calls,
conditional instructions, a repeat instruction, reset, and interrupts.

 The ’54x supports both the use of hardware and software interrupts for program
control. Interrupt service routines are vectored through a relocatable interrupt vector
table. Interrupts can be globally enabled/disabled and can be individually masked
through the interrupt mask register (IMR). Pending interrupts are indicated in the

interrupt flag register (IFR). For detailed information on the structure of the interrupt
vector table, the IMR and the IFR, see the device-specific data sheets.

Status Registers (ST0, ST1)
The status registers, ST0 and ST1, contain the status of the various conditions and
modes for the ’54x devices. ST0 contains the flags (OV, C, and TC) producedarithmetic
operations and bit manipulations in addition to the data page pointer (DP) and the
auxiliary register pointer (ARP) fields. ST1 contains the various modes and instructions
that the processor operates on and executes.
Auxiliary Registers (AR0–AR7)
The eight 16-bit auxiliary registers (AR0–AR7) can be accessed by the central arithmetic
logic unit (CALU) and modified by the auxiliary register arithmetic units (ARAUs). The
primary function of the auxiliary registers is generating 16-bit addresses for data space.
However, these registers also can act as general-purpose registers or counters.
Temporary Register (TREG)
The TREG is used to hold one of the multiplicands for multiply and multiply/accumulate
instructions. It can hold a dynamic (execution-time programmable) shift count for
instructions with a shift operation such as ADD, LD, and SUB. It also can hold a dynamic
bit address for the BITT instruction. The EXP instruction stores the exponent value
computed into the TREG, while the NORM instruction uses the TREG value to normalize
the number. For ACS operation of Viterbi decoding, TREG holds branch metrics used by
the DADST and DSADT instructions.
Transition Register (TRN)
The TRN is a 16-bit register that is used to hold the transition decision for the path to
new metrics to perform the Viterbi algorithm. The CMPS (compare, select, max, and
store) instruction updates the contents of the TRN based on the comparison between
the accumulator high word and the accumulator low word.
Stack-Pointer Register (SP)
The SP is a 16-bit register that contains the address at the top of the system stack. The
SP always points to the last element pushed onto the stack. The stack is manipulated by
interrupts, traps, calls, returns, and the PUSHD, PSHM, POPD, and POPM instructions.
Pushes and pops of the stack predecrement and postincrement, respectively, all 16 bits
of the SP.
Circular-Buffer-Size Register (BK)
The 16-bit BK is used by the ARAUs in circular addressing to specify the data block size.
Block-Repeat Registers (BRC, RSA, REA)
The block-repeat counter (BRC) is a 16-bit register used to specify the number of times
a block of code is to be repeated when performing a block repeat. The block-repeat start
address (RSA) is a 16-bit register containing the starting address of the block of program
memory to be repeated when operating in the repeat mode. The 16-bit block-repeat end
address (REA) contains the ending address if the block of program memory is to be
repeated when operating in the repeat mode.
Interrupt Registers (IMR, IFR)
The interrupt-mask register (IMR) is used to mask off specific interrupts individually at
required times. The interrupt-flag register (IFR) indicates the current status of the
interrupts.
Processor-Mode Status Register (PMST)
The processor-mode status register (PMST) controls memory configurations of the ’54x
devices.
Power-Down Modes

There are three power-down modes, activated by the IDLE1, IDLE2, and IDLE3
instructions. In these modes, the ’54x devices enter a dormant state and dissipate
considerably less power than in normal operation. The IDLE1 instruction is used to shut
down the CPU. The IDLE2 instruction is used to shut down the CPU and on-chip
peripherals. The IDLE3 instruction is used to shut down the ’54x processor completely.
This instruction stops the PLL circuitry as well as the CPU and peripherals.

BUS STRUCTURE
The ’54x device architecture is built around eight major 16-bit buses:

 One program-read bus (PB) which carries the instruction code and immediate
operands from program memory

 Two data-read buses (CB, DB) and one data-write bus (EB), which interconnect to
various elements, such as the CPU, data-address generation logic (DAGEN), program-
address generation logic (PAGEN), on-chip peripherals, and data memory

 The CB and DB carry the operands read from data memory.

The EB carries the data to be written to memory.

 Four address buses (PAB, CAB, DAB, and EAB), which carry the addresses needed
for instruction execution The ’54x devices have the capability to generate up to two data-
memory addresses per cycle, which are stored into two auxiliary register arithmetic units
(ARAU0 and ARAU1).
The PB can carry data operands stored in program space (for instance, a coefficient
table) to the multiplier for multiply /accumulate operations or to a destination in data
space for the data-move instruction. This capability allows implementation of single-cycle
three-operand instructions such as FIRS. The ’54x devices also have an on-chip
bidirectional bus for accessing on-chip peripherals; this bus is connected to DB and EB
through the bus exchanger in the CPU interface. Accesses using this bus can require
more than two cycles for reads and writes depending on the peripheral’s structure.
The ’54x devices can have bus holders connected to the data bus and the HPI data bus.
Bus holders ensure that the data bus does not float. When bus holders are enabled, the
data bus maintains its previous level. Setting bit 1 of the bank-switching control register
(BSCR) enables bus holders and clearing bit 1 disables the bus holders. A reset
automatically disables the bus holders. Selected devices also have equivalent bus
holders connected to the address bus. The bus holders ensure that the address bus
does not float when in high impedance. For these devices, the bus holders are always
enabled.
MEMORY
The minimum memory address range for the ’54x devices is 192K words — composed
of 64K words in program space, 64K words in data space, and 64K words in I/O space.
Selected devices also provide extended program memory space of up to 8M words. The
program memory space contains the instructions to be executed as well as tables used
in execution. The data memory space stores data used by the instructions. The I/O
memory space interfaces to external memory-mapped peripherals and can also serve as
extra data storage space. The ’54x DSPs provide both on-chip RAM and ROM to
improve system performance and integration.
On-Chip ROM

The ’54x devices include on-chip maskable ROM that can be mapped into program
memory or data memory depending on the device. On-chip ROM is mapped into
program space by the microprocessor/microcontroller (MP/MC) mode control pin. On-

chip ROM that can be mapped into data space is controlled by the DROM bit in the
processor mode status register (PMST). This allows an instruction to use data stored in
the ROM as an operand. Customers can arrange to have the ROM of the ’54x
programmed with contents unique to any particular application.
Bootloader
A bootloader is available in the standard ’54x on-chip ROM. This bootloader can be
used to transfer user code from an external source to anywhere in the program memory
at power up automatically. If the MP/MC pin of the device is sampled low during a
hardware reset, execution begins at location FF80h of the on-chip ROM. This location
contains a branch instruction to the start of the bootloader program.
On-Chip Dual-Access RAM (DARAM)
Dual-access RAM blocks can be accessed twice per machine cycle. This memory is
intended primarily to store data values; however, it can be used to store program as well.
At reset, the DARAM is mapped into data memory space. DARAM can be mapped into
program/data memory space by setting
the OVLY bit in the PMST register.
On-Chip Single-Access RAM (SARAM)
Each of the SARAM blocks is a single-access memory. This memory is intended
primarily to store data values; however, it can be used to store program as well. SARAM
can be mapped into program/data memory space by setting the OVLY bit in the PMST
register.
On-Chip Two-Way Shared RAM
Select 54x devices with multiple CPU cores include two-way shared RAM blocks that
allow simultaneous program space access from two CPU cores. Each CPU can perform
a single access with zero-states to any location in the two-way shared RAM during each
clock cycle. This shared RAM is most efficiently used when the two CPUs are
executingidentical programs. In this case, the amount of program memory required for
the application is effectively reduced by 50% since both CPUs can execute from the
same RAM.
On-Chip Memory Security
A security feature is included on 54x devices to prevent the on-chip memory contents
from being extracted by a user. This feature is enabled during the manufacturing
process and is ONLY available to customers that order custom ROM programming.
Consequently, memory security cannot be enabled/disabled by the user.
Program Memory
The standard external program memory space on the ’54x devices addresses up to 64K
16-bit words. Software can configure their memory cells to reside inside or outside of the
program address map. When the cells are mapped into program space, the device
automatically accesses them when their addresses are within bounds. When the
program-address generation (PAGEN) logic generates an address outside its bounds,
the device automatically generates an external access.
PIPELINING
Instruction pipelining is a technique that implements a form of parallelism called
instruction-level parallelism within a single processor. It therefore allows faster CPU
throughput (the number of instructions that can be executed in a unit of time) than would
otherwise be possible at a given clock rate. The basic instruction cycle is broken up into
a series called a pipeline. Rather than processing each instruction sequentially (finishing
one instruction before starting the next), each instruction is split up into a sequence of
steps so different steps can be executed in parallel and instructions can be processed
concurrently (starting one instruction before finishing the previous one). identical
programs. In this case, the amount of program memory required for the application is
effectively reduced by 50% since both CPUs can execute from the same RAM.

On-Chip Memory Security
A security feature is included on 54x devices to prevent the on-chip memory contents
from being extracted by a user. This feature is enabled during the manufacturing
process and is ONLY available to customers that order custom ROM programming.
Consequently, memory security cannot be enabled/disabled by the user.
Program Memory
The standard external program memory space on the ’54x devices addresses up to 64K
16-bit words. Software can configure their memory cells to reside inside or outside of the
program address map. When the cells are mapped into program space, the device
automatically accesses them when their addresses are within bounds. When the
program-address generation (PAGEN) logic generates an address outside its bounds,
the device automatically generates an external access.
PIPELINING

Instruction pipelining is a technique that implements a form of parallelism called instruction-

level parallelism within a single processor. It therefore allows faster CPU throughput (the

number of instructions that can be executed in a unit of time) than would otherwise be possible

at a given clock rate. The basic instruction cycle is broken up into a series called a pipeline.

Rather than processing each instruction sequentially (finishing one instruction before starting

the next), each instruction is split up into a sequence of steps so different steps can be executed

in parallel and instructions can be processed concurrently (starting one instruction before

finishing the previous one).

Indirect Addressing
• Data space is accessed by address present in an auxiliary register. • 54xx have 8, 16
bit auxiliary register (AR0 – AR 7). Two auxiliary register arithmetic units (ARAU0 &
ARAU1) • Used to access memory location in fixed step size. AR0 register is used for
indexed and bit reverse addressing modes. • For single – operand addressing MOD type
of indirect addressing ARF AR used for addressing
• ARP depends on (CMPT) bit in ST1 CMPT = 0, Standard mode, ARP set to zero CMPT = 1,

Compatibility mode, Particularly AR selected by ARP

Table 1 Indiect addressing option with single data memory operand ; Circular addressing\

Bit-Reversed Addressing:
• Used for FFT algorithms. • AR0 specifies one half of the size of the FFT. • The value of
AR0 = 2N-1: N = integer FFT size = 2N • AR0 + AR (selected register) = bit reverse
addressing. • The carry bit propagating from left to right.
Dual-Operand Addressing
Dual data-memory operand addressing is used for instruction that simultaneously
perform two reads (32-bit read) or a single read (16-bit read) and a parallel store (16-bit
store) indicated by two vertical bars, II. These instructions access operands using
indirect addressing mode.

If in an instruction with a parallel store the source operand the destination operand point to the

same location, the source is read before writing to the destination. Only 2 bits are available in

the instruction code for selecting each auxiliary register in this mode. Thus, just four of the

auxiliary registers, AR2-AR5, can be used, The ARAUs together with these registers, provide

capability to access two operands in a single cycle. Figure 6 shows how an address is generated

using dual data-memory operand addressing.

Memory-Mapped Register Addressing
• Used to modify the memory-mapped registers without affecting the current datapage
pointer (DP) or stack-pointer (SP) – Overhead for writing to a register is minimal – Works
for direct and indirect addressing – Scratch –pad RAM located on data PAGE0 can be
modified • STM #x, DIRECT • STM #tbl, AR1
Figure

Stack Addressing
• Used to automatically store the program counter during interrupts and subroutines. •
Can be used to store additional items of context or to pass data values. • Uses a 16-bit
memory-mapped register, the stack pointer (SP). • PSHD X2

